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A METHOD OF CONSTRUCTING POLHODES OF AN INTERMEDIATE MOTION IN THE
DYNAMICS OF A RIGID BODY

V.A. KURYAKOV

Asymptotic methods are used to construct the polhodes of an intermediate
motion of a non-symmetric body about its centre of mass. The fundamental

effects of thigs motion are governed bv the action of +the gmall external
....... this moticon are governed py tne action ¢f the smali exXternal

resistance of the medium, linear with respect to the angular velocity
of rotation Non-Eulerian motion is employed to construct the equations
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in osculating variables. A modification of the averaging procedure is
proposed which makes it possible to obtain finite expressions for the
polhodes of the intermediate motion. Results of the analyvsis of the

mEkarmadd ste metd on .

intermediate motion and of the evolution

rotation of the bodv are given.
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1. we consider the problem of the rapid motion of a non-symmetric rigid bodv about its
centre of mass, whose basic effects are governed by the action due to the resistance of the
surrounding medium, which is linear with respect to the angular velocitv. Following /1/, we
shall call the motions rapid, if the moment of external forces about a fixed point is small
compared with the current value of the kinetic energy of rotation. We shall write the dynamic
Euler equations, taking into account the specific features of the motion described earlier,

in the form e i o [ s ioan P
Ap® -+ (C — B) gr = ¢ M, (pgr, ABC, 123) {1.1)
Here p,q,r are the projections of the angular velocity vector ® onto the coordinate axes,
A, B, C are the principal central moments of inertia of the body, ¢ is a small non-negative
parameter, and M;(i=1,2,3) are the components of the perturbing moment M where M= —Jo, 7
is the matrix of the constant coefficients /2/ of resistance I;; in associagted axes (i, j=1,2,
3). Henceforth we shall assume that A >B>C.
When studying the evolution of rapid motions of a rigid body about the centre of mass,
we normally use the Euler-Poinsot motion as the generating motion obtained from Egs. {1.1) for
g= 0, and we apply the method of varving the arbitrary Lagrange constants /1-5/ (of the
generating solution). At the same time, the universal character of the Lagrange's method /5/
which can be used when choosing the unperturbed motion arbitrarily, makes it possible to carrv

out the investi gation using motions resembling that described by Egs. (1.1) more Closelv than

investligation usin meoticons resembling Tnat AesCribeld DY kds

the Eulerian motion. Such motions, which were first encountered in classical celestial
mechanics, have become particularly valuable in connection with constructing the theory of the

moticn of artificial celestial bodies, and are called intermediate motions, while the correspond-

ing trajectories are called intermediate orbits /3, 5, 5/.
The problem of constructing the trajectories (polhodes and herpolhodes) of the intermediate

motion of a rigid body was discussed in /3/ The method involves taking into account the most

moticn & rigld Doy was dlscussed 1n /3. taking

significant special features of the rotational motion in such a manner that the corresponding
equations can be integrated in closed form. The present paper gives a method of constructing

the polhodes of the intermediate motion, taking into account the small forces opposing the

rotation of the body.
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2. The process of integrating the dynamic Euler equations reduces, in the Euler-Poinsot
case, to finding the general solution of the equations

0.9 2= Fy(q), Fq (@) = 0® (M2 — ¢%) (32 — ¢) (2.1)
o2 = (4 — B)B — C)/(4C)

written using the notation of /7/ where F,(9) is a
fourth-degree polvnomial in q.

Let us consider the case |A|>|A,| correspond-
ing to e appearing near the axis of the moment of
inertia C. We approximate the polynomial F,(q)
from the right-hand side of (2.1) over the interval
[—%;, %3], using the second degree polynomial F,(g).

0.1 1 The insert in Fig.l shows one of the branches of the
g 10 t, sec. corresponding even functions F;= F;(g) (the solid
line) and F, =f.(q) (the dashed line). Then retain-
Fig.1l ing the previous notation for the projections of
o, we shall write

0.5

, 1/ BB=C o -
p=s1hrs | TA—_-COS"" q == Saty sinug (2.2)

r vA]/B Vi—kzsin? PR
= SgM A4 — C) — M 8IS Uy, U=

up = A3t --a

where a is an arbitrary integration constant and s (i=1,2,3) are numbers equal to -4 1 and
determining the signs of the radicals /8/.

We note that expressions of the form (2.2) can be obtained from the corresponding Euler-
Poinsot equations by retaining the first harmonic in the Fourier series /9/, with an accuracy
of O (?, or by using the Landen transformation /6/.

When solving the fundamental problem of constructing the equations of motion /10/ using
the known first integrals (2.2), we shall write

Ap” —+ (C — B) g6 =0 (pgr, ABC) (2.3)
 B(4—B)g a
o=[1+ za=or |

Egs.(2.3) and their general solution (2.2), which will be used below to study the
behaviour of soltuions of pertuxbed system (1.1}, will be called, unlike the generating
equations, the basis equations.

In order to study the evolution of motion, we construct the equations in osculating
elements /5/ using arbitrary constants of the basis solution(2.2) as the latter. After
carrying out the necessary manipulations, we write the equations in the following form:

My CA—C) My,
A =¢ [kl —F—sm Hy— *B#il—_B’)- ——Ci]/i — If12si112u1} (2.4)

. AA—C) My M,
Ay =& m 1 CcoS Uy + B Sinu

ST TR TR v ’I(A_b M
Uy =M3¥V 1 —k2sindu 5 ™ co:ul— BFB—Cy A sin g

where we have assumed that s =s5, =1, s3=— 1.

Let us investigate the solution of system (2.4) for small & over a long time interval
t~¢&1 , using the method of averaging /11, 12/. We note that Eqgs.(2.4) refer to general-type
systems whose averaging is carried out /11/ along the trajectories of the perturbed Euler-
Poinsot motion, which can easilv be confirmed for (2.4) was used in /13/ to reduce the
averaging manipulations to determining the quadratures of elementary functions. In order to
simplify the averaging procedure we shall introduce the average motion /5/ n, = 2x'T, and angular
velocity vector where T, =4K/(,0) is the period of a single circuit of the polhodes in the
unperturbed motion. As a result we can write, retaining the former notation for the variables,
the approximate system with rotating phase (we shall call it system A) in the form (2.4},
where the first term in the last equation is replaced by n,.

The passage to the average motion in the last equation corresponds to approximating the
generating Euler-Poinsot solution, in the process of averaging (2.4), bv its approximate
expression (2.2) where u, = n,. We alsc note the overlap of the trajectorv o, with the periods
of generating motions for Egs.(2.4) and svstem A.

In connection with the proposed change in the averaging procedure, we should take notice
of /14/ where the investigation of non-linear svstems of differential equation in standard
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form using the method of averaging was simplified by replacing the initial equations by
approximate equations constructed using the first term of the expansion of the generating
solution in series in powers of some parameter. Expansion in a Fourier series was recommended
for the case of periodic generating solutions.

3. We propose that system A be used to construct the polhodes of the intermediate motion.
Let us write the averaged system of the first approximation by substituting into the right-
hand sides of system A the expression for the projections of the perturbing moment taking {2.2)
into account, and average over the rapid variable u,. The error in the averaged solution for
the slow variable of the system A is of the order of ¢ in the time interval over which e
will execute ~ g! rotations over the polhodes.

We shall write the averaged equations for the slow variables in the form

. e I I3y
I _mm[ T Mt o (2 -wu] @1

. thy (T Iy
(L L)

In using the proposed approach to the choice of the basis solution and modifyving the
averaging procedure, we find that it is possible to obtain the solutions for (3.1) in the
finite form

i
2 (1) = {C1 + Comta [exp (oret) — 1]} exp <~ 2 —%LM) (3.

1T Ty
= Cuexp [ = (G + 5 ) v ]

{ T3 Te \[, In Iy I\t ” 2]&_ T e
WA TP TTA B ) 2=\*T T4 7B

Here (;{i=1,2) are arbitrary constants of integration which can be found from the formulas
Cp=A2{0), Cy =1y ().

When |4, |<|% |, we mast interchange in (2.4) and below &, with A, f/d and 1,/C, & with
k, respectively, where k&, = k7.

Expressions (2.2) where the values of M), A () and k() vary slowly in accordance with
relations (3.2), define the polhodes of the intermediate motion of the body about the centre
of mass. The intermediate motion is determined uniquely by choosing the law of motion of the
angular velocity vector over the polhodes.

4. Let us compare the polhodes of the intermediate motion determined by the expressions
(2.2), {3.2), with the results of /1/. The studv of the intermediate motion can be reduced
to analysing the equation in &

By o= ek [( 131 _ ﬁl - %‘) (%’i I_;;{)J 4.1

The corresponding equation /1/ in % describing the evolution of the polhodes of the
Eulerian rotation of the body, is written in the form

e 2 [;. ?‘([‘3 E lnK_—E —IL> K= B _I__\q )
’ Fil '

¢CK ' F K 4 K a4

where K=K {), E=E (k) are total elliptic integrals of first and second kind respectively,
and k is the modulus of the elliptic Jacobi functions. It can be shown that when we take
into account the additional condition for the existence of the quasistaticnary non-zero
solutions of (4.1)

(la—lo-le)(la - )" <)

3 ol B/\C B N

then the results of a gqualitative analvsis of the behaviour of the solutions of (4.1} are
identical with those given in /1/ for Eq.(4.2).

The graphs in Fig.l showing the solution of Egs.(4.2) by curve I and of (4.1} by curve 2
for Iy/A = 3.5, Iy/B = 1.5, I;5/C = 3.0, ky (0) = 0.1, provide a numerical comparison. Curves 3 and ¢
correspond to the guasistationary solutions. Fig.2 shows the relations connecting the quasi-
stationary solutions with the values of the dissipation coefficients, where curves I correspond
to Eq.(4.2) and curve 2 to (4.1). The solid lines represent the dependence on [I,/4, where
we have assumed that In/B = 1.5, I3/C = 3.0, the dashed lines the dependence on In/B for I,/A =25
I4/B = 2.0, and the dot-dash lines the dependence on I4/C for I, /4 =4.0, Tg9/B == 0.2,

The above results show that the difference between the polhodes of the intermediate motion
constructed here and the corresponding evolutionarv changes in the polhodes of the Eulerian
rotation /1/ does not exceed 10% in these cases. The error arises when averaging the right-
hand sides of system A along the polhodes (2.2), by using the law of motion of e along it
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of the form u, = n, instead of the expression u;"=Mol 1—k?sin®,; corresponding to the Euler-
Poinsot motion.
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