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A METHOD OF CONSTRUCTING POLHODES OF AN INTERMEDIATE MOTION IN THE 
DYNAMICS OF A RIGID BODY* 

V.A. KURYAKOV 

Asymptotic methods are used to construct the polhodes of an intermediate 

motion of a non-symmetric body about its centre of mass. The fundamental 
effects of this motion are governed by the action of the small external 

resistance of the medium, linear with respect to the angular velocity 
of rotation. Non-Eulerian motion is employed to construct the equations 

in osculating variables. A modification of the averaging procedure is 

proposed which makes it possible to obtain finite expressions for the 

polhodes of the intermediate motion. Results of the analysis of the 
intermediate motion and of the evolution of the polhodes of an Eulerian 
rotation of the body are given. 

1. We consider the problem of the rapid motion of a non-slymmetric rigid body about its 

centre of mass, whose basic effects are governed by the action due to the resistance of the 

surrounding medium, which is linear with respect to the angular velocity. Following /l/, we 
shall call the motions rapid, if the moment of external forces about a fixed point is small 

compared with the current value of the kinetic energy of rotation. We shall write the dynamic 
Euler equations, taking into account the soecific features of the motion described earlier, 

in the form 
Ap' + (C - B)qr = e.ll, (pqr, ABC, 123) (1.1) 

Here p,q,~ are the projections of the angular velocity vector o onto the coordinate axes, 

A,B,C are the principal central moments of inertia of the body, E is a small non-negative 

parameter, and Mi(i= 1,2,3) are the components of the perturbing moment M where M = -IO, I 

is the matrix of the constant coefficients /2/ of resistance Iij in associated axes (i, j = 1,2, 

3). Henceforth we shall assume that A>B>C. 
When studying the evolution of rapid motions of a rigid body about the centre of mass, 

we normally use the Euler-Poinsot motion as the generating motion obtained from Eqs.(l.l) for 
E = 0, and we apply the method of varying the arbitrary Lagrange constants /l-S/ (of the 
generating solution). At the same time, the universal character of the Lagrange's method /5/ 

which can be used when choosing the unperturbed motion arbitrarily, makes it possible to carry 

out the investigation using motions resembling that described by Eqs.(l.l) more closely than 
the Eulerian motion. Such motions, which were first encountered in classical celestial 

mechanics, have become particularly valuable in connection with constructing the theory of the 

motion of artificial celestial bodies, and are called intermediate motions,whilethecorrespond- 

ing trajectories are called intermediate orbits /3, 5, 5/. 
The problem of constructing the trajectories (polhodes and herpolhodes) of the intermediate 

motion of a rigid body was discussed in /3/. The method involves taking into account the most 

significant special features of the rotational motion in such a manner that the corresponding 

equations can be integrated in closed form. The present paper gives a method of constructing 

the polhodes of the intermediate motion, taking into account the small forces opposing the 

rotation of the body. 
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2. The process of integrating the dynamic Euler equations reduces, in the Euler-Poinsot 

case, to finding the general solutionoftheequations 

,J'~ = F4 (q). F4 (q) = 19 (LIZ - q*) (i.i? - q2) (2.1) 
$=(A--B)(B-C)/(AC) 

a 5 111 t, sec. 

Fig.1 

written using the notation of /7/ where Tr (q) is a 

fourth-degree polynomial in g. 

Let us consider the case Ih,f>lh,f correspond- 
ing to o appearing near the axis of the moment of 

inertia C. We approximate the polynomial F, (9) 
from the right-hand side of (2.1) over the interval 

[-&, &I 9 using the second degree polynomial F, (9). 
The insert in Fig.1 shows one of the branches of the 
corresponding even functions p,= !'a (q) (the solid 

line) and F, ----f)(q) (the dashed line). Then retain- 

ing the previous notation for the projections of 

w, we shall write 

where a is an arbitrary integration constant and s,(i =1,2,3) are numbers equal to 21 and 

determining the signs of the radicals /8/. 

We note that expressions of the form (2.2) can be obtained from the corresponding Euler- 
Poinsot equations by retaining the first harmonic in the Fourier series /9/, with an accuracy 

of 0 (V) , or by using the Landen transformation /6/. 
When solving the fundamental problem of constructing the equations of motion /lo/ using 

the known first integrals (2.2), we shall write 

Ap’ j (C -B) qd = 0 (pqr., ABC) (2.3) 

6= I+ 
r 

B(A-B)q? ‘12 
C (A ~ C) 1% I 

Eqs.(2.3) and their general solution (2.2), which will be used below to study the 
behaviour of soltuions of perturbed system (l.l), will be called, unlike the generating 

equations, the basis equations. 

In order to study the evolution of motion, we construct the equations in osculating 
elements /5/ using arbitrary constants of the basis solution(2.2) as the latter. After 

carrying out the necessary manipulations, we write the equations in the following form: 

(2.4) 

wherewehave assumed that s,=s,=l, s3=- 1. 

Let us investigate the solution of system (2.4) for small E over a long time interval 
t - E-1 , using the method of averaging /ll, 12/. We note that Eqs.(2.4) refer to general-type 

systems whose averaging is carried out /ll/ along the trajectories of the perturbed Euler- 

Poinsot motion, which can easily be confirmed for (2.4) was used in /13/ to reduce the 
averaging manipulations to determining the quadratures of elementary functions. In order to 

simplify the averaging procedure we shall introduce the average motion /5/ ,l,= Zn T, and angular 
velocity vector where T, =4Kl@,o) is the period of a single circuit of the polhodes in the 
unperturbed motion. As a result we can write, retaininq the former notation for the variables, 

the approximate system with rotating phase (we shall call it system A) in the form (2.4), 
where the first term in the last equation is replaced by ?I,. 

The passage to the average motion in the last equation corresponds to approximating the 
generating Euler-Poinsot solution, in the process of averaging (2.4), by its approximate 
expression (2.2) where ul'=n,. We also note the overlap of the trajectory o, with the periods 

of generating motions for Eqs.(2.4) and system A. 
In connection with the proposed change in the averaging procedure, we should take notice 

of /14/ where the investigation of non-linear systems of differential equation in standard 
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form using the method of averaging was simplified by replacing the initial equations by 
approximate equations constructed using the first term of the expansion of the generating 
solution in series in powers of some parameter. Expansion in a Fourier series was recommended 
for the case of periodic generating solutions. 

3. w e propose that system A be used to construct the polhodes of the intermediate motion. 
Let us write the averaged system of the first approximation by substituting into the right- 
hand sides of system A the expression for the projections of the perturbing moment taking (2.2) 
into account, and average over the rapid variable I(~. The error in the averaged solution for 
the slow variable of the system A is of the order of E in the time interval over which o 
will execute -8-l rotations over the polhodes. 

We shall write the averaged equations forthe slow variables in the form 

In using the proposed approach to the choice of the basis 
averaging procedure, we find that it is possible to obtain the 
finite form 

(3.1) 

solution and modifying the 
solutions for (3.1) in the 

(3.") 

Here C,(i=l,Z) are arbitrary constants of integration which can be found from the formulas 
c, = h," (01, c, = b (0). 

When jLII<Ih,j, we must interchange in (2.4) and below h, with A,, f,,!A and I,,'C,k, with 

kz respectively, where b? = k-l,. 

Expressions (2.2) where the values of h,(t),&(t) and k,(t) vary slowly in accordance with 
relations (3.2), define the polhodes of the intermediate motion of the body about the centre 
of mass. The intermediate motion is determined uniquely by choosing the law of motion of the 
angular velocity vector over the polhodes. 

4. Let us compare the polhodes o f the intermediate motion determined by the expressions 
(2.2), (3.21, with the results of /l/. The study of the intermediate motion can be reduced 
to analysing the equation in k, 

(4.1) 

The corresponding equation /l/ in k, describing the evolution of the polhodes of the 
Eulerian rotation of the body, is written in the form 

where K=K(li,), E= E(li,) are total elliptic integrals of first and second kind respectively, 
and kl is the modulus of the elliptic Jacobi functions. It can be shown that when we take 
into account the additional condition for the existence of the quasistationary non-zero 
solutions of (4.1) 

then the results of a qualitative analysis of the behaviour of the solutions of (4.1) are 
identical with those given in fl/ for Eq.(4.2). 

The graphs in Fig.1 showing the solution of Eqs.(4.2) by curve 1 and of (4.1) by curve 2 

for I,,/A = 3.5, IJB = 1.5, I,,/C = 3.0, IQ (0) = O.i, provide a numerical comparison. Curves 3 and 4 

correspond to the quasistationary solutions. Fig.2 shows the relations connecting the quasi- 

stationary solutions with the values of the dissipation coefficients, where curves 1 correspond 

to Eq.(4.2) and curve 2 to (4.1). The solid lines represent the dependence on I,,/A, where 

we have assumed that I,,iB = 1.5, I,,lC = 3.0,the dashed lines the dependence on ItSiB for I,,IA = 2.5, 

I,,IB = 2.0, and the dot-dash lines the dependence on I,,lC for I,,/.4 = 4.0, IdB = 0.2. 

The above resul.ts show that the difference between the polhodes of the intermediate motion 
constructed here and the corresponding evolutionary changes in the polhodes of the Eulerian 
rotation /l/ does not exceed lO% in these cases. The error arises when averaging the riqht- 
hand sides of system A along the polhodes (2.21, by using the law of motion of o along it 
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of the form I+'= n, instead of the expression ~~.=h~q/~-_~ corresponding to the Euler- 

Poinsot motion. 

I 1 I 
0.5 f.0 xzzls 1.5 

I I I 
2.5 JO h/C J.5 

Fig.2 
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